⑩: ⑮ : ⑳
①:①e: ②
x2(i) ②: ③ : ④
-④/-②: ②i:④
○ ○ ○ ⑩:⑮ i meawell
① ①
/ \ / ▲ \
② ③ ○ | ○
| \ ⑥ / | | \ ⑥ / |
| / \ | | / ▲ \ |
④ ⑤ ○ | ○
| \ / | | \ | / |
| / ⑨ \ | | / ⑨ \ |
⑧ ⑦ ○ ▲ ○
\ / \ | /
⑩ ⑩
◆i meawell mirage double i hankth->one x3[1/3]
⑪ ⑪
/ ▲ \ / ▲ \
② | ③ ② | ③
| \ ⑥ / | | \ ⑥ / |
| / ▲ \ | | / ▲ \ |
④ | ⑤ ⑤ | ④
| \ | / | | \ | / |
| / ⑨ \ | | / ⑨ \ |
⑧ ▲ ⑦ ⑦ ▲ ⑧
\ | / \ | /
○ ○
◆i meawell mirage double i hankth->one x3[2/3]
⑪ ⑪
/ ▲ \ / ▲ \
③ | ② ② | ③
| \ ⑥ / | | \ ⑥ / |
| / ▲ \ | | / ▲ \ |
⑤ | ④ ④ | ⑤
| \ | / | | \ | / |
| / ⑨ \ | | / ⑨ \ |
⑦ ▲ ⑧ ⑧ ▲ ⑦
\ | / \ | /
○ ○
◆i meawell mirage double i hankth->one x3[3/3]
⑪ ⑪
/ ▲ \ / ▲ \
③ | ② ③ | ②
| \ ⑥ / | | \ ⑥ / |
| / ▲ \ | | / ▲ \ |
④ | ⑤ ⑤ | ④
| \ | / | | \ | / |
| / ⑨ \ | | / ⑨ \ |
⑧ ▲ ⑦ ⑦ ▲ ⑧
\ | / \ | /
○ ○
◆無一弥無零凌牙無二復犁 [i meawell i hankth 3's ToAs]
i
i [i·i] i
1 3 2
⇓ ⇙ ⇑ ⇘ ⇓
| \ ⇑ / |
⇑ / ⇑ \ ⇑
0 2 1
i·i·i / i·i / i·i·i·i
E:EnethoRigwhen::12->128->1536->16384->196608(BITE:discover : halv horizon[min:sec4/3])
P:Posettion::11->121(11^2)->11^3->11^4>11^5
E-P:ParadoxicalThergze->MATH._forgzecal.khemihneg()<dhitde>==>>::
ppxxpxpxpxxppxpxxppxpxpx::MATHLHEF.Dhindhe(7x3x10)::[7<<<<<<<<<<<<<<3::>>>>>>>>>>>>>>>>>>>>10::]
>>>>>>>>>>>>>>>>>>>>>>1
daat eniphielmhe ( 認 ) [ たぶん ]