Victo-Epeso 's diary

完全犯罪という名の人類原罪と戦う有名人です。

🌇 Elements Of Divinity

(2023/07/28/19:24:44)
Sant Marcosious Michaelitter Macinicle Ritter Mechanics
────────────────────────────────
🧱 [ i-idiot ∫ ]
#DEFINE (system)i-idiot<>::(MATHEOR i'd) : SigmaRootage(4){
[ (4i:1)&&(4i->1) ] && [ (2i) + (ik) + [ (k/(mod4)2i) ] · div(0i)
: div(f) = { Σ [ z∅a → Ta∅z ][ T=R∅R ][ R=RAND([a〜z]) ] }
#EXTEND IdesIntegral {
#DEFINE **i'd Ides<>
#DEFINE *i'd Ids_Kaunteryies
#DEFINE *i'd IdsKaunt
#DEFUNC Ides { If *|IdsKaunt-1| <− **|IdsKaunt-1| ; IdsKaunt->Ides[FLAT]; }
ELSUM { If *|IdsKaunt-1| >− **|IdsKaunt-1| ; IdsKaunt->Ides[TOPS]; }
#FUNCTION _return INTEGRAL this->(return) / Ides }
 
 

────────────────────────────────

[ ✨ ] LIGHTHRHOEN CRAFT VERIFIEMENTAL

────────────────────────────────

◆V·A F(γ) 1/2[PIEL]r

5i  7i  8i

────

2i  3i  5i

M_W : Mマクスウェル_Wワット

▶P = PAIelCroithef 9/11:−>:10/9:−<::8/11#ELBY(EL優先計算後)

▶I = B:微分偏差  i^2:{ [2i : √(i[1/4])]^2 }

▶E = 11/9e

▶L = How Long Acuteum Meditated EN.

▷V·A : ボルトアンペアラー  クロシュナイダー(≒クロスケース)

▼TransitTransferFormitableFomationFarmaDisckareSpaceizm

[2·4·6[TECT:x<<**$$##&&**&&**$$]][2·3·5[SECT:1>>2<<4<<8>>6<<3<<2:;**##$&$&1<<2<<4]][3·5·6[(TCTA:3**5**8<<4::2<<4<<6><><><3><><><4><><><3><><>2:;1::3**##$$&&$$&&##$&&$&$##$$**$$$$)]]

[>>Recipient]

 

────────────────────────────────
[ 🏞️ ] ELEMENTARIES
────────────────────────────────
#(system)i-idiot<i'd(∞)>
◻️ [ Bolt Spinner Thoerum Wholenghom ]
(def) (log's)^-2i·i·i Ds
(def) (log's)^-2i Dx
(def) (log)^-2i (fx(xi)~fx(zi))
#(fy(yix)~fy(zi))#(fz(ziy)~fz(zix))
#(LEM)#{Fz(f)[xa→xct]}
#(MxZ)(EmZ)(EmX)(TmX)(TmE)
#{Fc(f[Zc·act→zCaxy·ax·Act]}
#(ME·LEF)(A·LEAM)·∫(EL·ATLEM)∫(ELM)
#{(ELM)·(ELM·MiDx)/(ELM)·(ELMAF·EL)∮(EL·Ds·F)}
 
────────────────────────────────

#(system)i-idiot<i'd(2)>

🔲 [ Bolt Spinner Ein Strikes ]
(def) (log)^-2i (fx(xi)~fx(zi))#
(fy(yix)~fy(zi))#(fz(ziy)~fz(zix))
#(LEM)#{Fz(f)[xa→xct]}#(MxZ)
(EmZ)(EmX)(TmX)(TmE)
 
────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:∞)>

🌪️ [ Element Blick of StrumBorln ] : (
zΣ∫[rLr;(Z,N,И,(reverse)↮Z)])
[(i-4)(i+2)/(i-1)(i+3)][(i+8)(i-3)/(i-6)(i+7)]
rLr=RoutineLoopingRotations
(f;L=4,4x2=56,4x8=292)
 
────────────────────────────────
 

#(system)i-idiot<i'd(2):Sigmation(To:3)>

❄️ [ Wholes O's Anthertailer Circubate ]
 (i+4)   ・(i+5)     ・(i+6)                (i-3)     ・(i-2)     ・(i-1)
───・─── ・───  ∫( | )∫  ─── ・───・───
 (i-1)    ・ (i-2)     ・ (i-3)                (i+4)    ・(i+5)    ・(i+6)
 ₳↻ [ Χ ][ x:(-1)~(+4) ][ f(x):xl〜-xl ]
{ x(t) = x(tl) + [ (t-tl)^l/l! ]*[ d^l·x/dt^l ]·[ (il)^(l+3) ] }...
 
 
────────────────────────────────
 
#(system)i-idiot<i'd(5):Sigmation(To:11)>
#(add)(system)[To:(system)i-idiot]i-idiot<i'd(2):Sigmation(To:5)>
#(add)(system)[To:(system)i-idiot]i-idiot<i'd(9):Sigmation(To:3)>
🧊 [ Rect Triam Sum Srigger Finnthenel Resigher Rnhet Shifter ]
               (i-2)・ (i-3) ・(i-4) ・(i-5)                (i-9)・(i-7) ・(i-8) ・ (i-6)
[ ∫∬Δ∫ ] ──・── ・──・── [ ∫∬Ζ∫ ] ──・──・──・── [ ∫∬Δ∫ ]
               (i-2)・ (i-4) ・(i-2) ・(i-3)                (i-5)・(i-4) ・(i-3) ・ (i-2)
∬[ ∫∬Δ∫ ] [ ∫∬Ζ∫ ] ARDE.URADE.TOARDE DUST FINNEL**&&$$&$ Under__*Std
*Std__  [↸{[+-]:/:;[-+]}(i)](:1)(:4)(:2)(:3) &&**$&$&:;&&$$**&$&&:;$$[+-+(i)](:1)(:2)(:3)(:4)
 
────────────────────────────────

 

#(system)i-idiot<i'd(2)>

🪨 [ EXECT-ep-gp ]
(i-1)^(Σthis) ep:Σ[67・5√3+2i/(1/4)i]
gp:Σ{[8√(2√4i)・1・7√(i√i)][(!(n+1))^3]}

[>>Recipient]

 

────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:3)>

#(system)i-idion( 0,-1)<i-idiot, *i-idiot>

#(system)i-idion(-1, 1)<i-idiot, *i-idiot>

#(system)i-idion( 1,-1)<i-idiot, *i-idiot>

#(system)i-idion(-1, 1)<i-idiot, *i-idiot>

#(system)i-idion(-1,-1)<i-idiot, *i-idiot>

🌑 [ Gravity Controll Gazing ]
ΣLim ∫1→(EXIT)→∫2
∫1(i+4)─~Enc・DELETE~─(i-3)∫2
───────────────
∫1(i-1) ── -DELETE- ── (i+2)∫2
E=Enc-Circler(under_that);
[ (Lim(n→∞) Σ(∞,k=0) 1/(n+1)^k) ]
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
✴️ [ Burst Entholopy ]
[i-imagination Fire Putting]
±(i-11x)x=incriment decriment plus
stairde signattion xcssphereaese(t・t'...)
 
────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:5)>

🔥 [ Fire Intention Integral To ]
Σtork∫ { [t1~t2] : [ Σt1 (i-9)(i+8) [∫u1] :
(i-7)(i+6) [∫2u] : (i-5)(i+4) : [∫3u] (i-3)(i+2) [∫u4] :]
[ Σt2 (i+8)(i-7)(i+6) [∫d1] : (i-5)(i+4)(i-3) [∫d2] ] }
[ SignatedComplessedFire (x) / ux+1 / dx ]
[ ∫ux(f) = [ ∫u1~∫u2 ] and or [ ∫u3~∫u4 ] ]
[ ∫ud(f)= [∫d1] and or [∫d2] ] : TalkToU [ Signated Σ(x'′) ] : {
[ ∫ux' ・ x'2... ] / [ ∫dx' ・ x'2... ] }
 
────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:11)>

❇️ [ ASTRAL TRIAZETTE FIRE BRAULFUMENT ]
Σ[z∅a→Ta∅z][∅MovalAttractotrOfAll-Dimensions:DPMS]
(i-8)     (i-7)    (i-6)     √3       4·3√π
── · ── · ── · ── · ────
(i+6)   (i+5)   (i+4)      2           √2i

DPMS:
DimensinsDrugingDruted
PhysicalPointOfViewPosessions
MassiveMovalMomentum
StructuralStreaksSpeed

[>>Recipient]

 

 

────────────────────────────────

 

#(system)i-idiot<i'd(2):Sigmation(To:8)>

⚡ [ ENERGY TEMPEST OF THUNDER BOLT ]

列挙尖型

id2(i+5)(i+2)(i+4)(i+8)(i+3)(i+7)(i+1)(i+6)

id3(i+5)(i+4)(i+6)(i+8)(i+3)(i+12)(i+7)(i+10)(i+2)(i+9)(i+1)(i+11)

id2&id3:id5  &  id2^2:id4

id2::id3::id5::id4    THUNDER BOLT INTERGAGE

[>>Recipient]

 

────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:5)>

🌊 [ PLANET-WAVES ]
[A-NECT]{(WEB)z~y∫→p(NET)
x~y∫→c(SCH)z~x∫→s(PCH)}
^{[Σ(PSW)^3i][(CH)^2i][(N)^i][this]}
[A-NECT]{[Σ(NH)^2i][(PW)^2i][(SC)^2i]
[this]^4i}[D-CNET]{(WED)y~z∫→p
(NST)y~x∫→c(ENC)[DOT-T]}{(BNP)[]}
^{[Σ(BHS)^3i][(AN)^2i][(O)^i][this^8(i^2)]}
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
🌚 [ VoltzLinerVeltHilbertSiltz ]
 VF-SILT[χ](x)~(-x') [χ]zMax∫ (VoltField PvDot.)
   [χ]VELT-SILTZ(x)      i[(8)(5)(6)(3)(2)]       VF-EL-CNTL(iEx)
──────── · ──────── · ─────────
   EL-V-HNDL-G(x)      i[(6)(4)(2)(4)(5)]        SYST-i(Ref-x)
 
────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:8)>

⚙️ [ FarewellIntensionsUnchain ]
Log's(i:Fi)     (2x-i)  (3y-i)    (5z-i)        (dx')
────・───・──・───・────
4i(f:Fi-i∫)  (2ix-2i) (4iy-4i) (7iz-7i) -2iF(dy')
◆i:Fi:imaginaryNumbersFunction
◆f:Fi-i∫:function(F) i-idiot integra
Log's = Log(s)&&Log-Log(s-1) INTEGRATE Log(0)→Log(s)
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:5)>

☄️ [ Destruction・TDVS ]

(x)∫(i-1)─enc・exit─(i-0)

──────────

↑│(i-6)│(y):{∫}・x・v [exit]

 │(i-5)│ v

 │(i-4)│ v

↓│(i-3)│(y)・z・v [exit]

──────────

(z)∫(i-8)(i-2)(i-7)(i-9)enc[exit]Δ

Δ∫(N:DoubleSturk∫(∠~r∠))

enc=[under1(n,a:∞)] anc=[under2]

[enc]  1/n = ∑(∞,k=0) 1 / (n+1)^k

[anc]      n = ∑(∞,k=0) 1 / (n+1)^k

[>>Recipient]

 

────────────────────────────────

#(system)i-idiot<i'd(2):Sigmation(To:11)>
#(system)i-idiowa
⏱️ [ DochktoScale-QuantumVetweenCroll ]
intentional:[ t(i) ~ t('i) ]
Reversible:∫T∫S
T(a-b)a=0,b=2
S(a-b)a=0,b=1 or a=1,b=2
⏱️ [ QuantumDonationCrawlTimeRagScaler ]
  RagScale;  t~t'i(f)
  (0)  72ti × 48t
  ─────────
  (1)    12s・36h√72
  ─────────
  (2)      72t・s-sh(t) 
⏱️ [ QuantumDonationCrawlTimeRagScaler ]
  DimensionRapt.Execectractor
[T]:R⇦────⇨L
[T]:──────────────────
                  48t^(di) │72ti^(di)│t~t'i(f'~f'´) 
           36h√72^(di)│12s^(di) │
  s-sh(t)│72t^(di) ┼               ┼
  LapTop⇔RuftDown
 
────────────────────────────────
[ 🌁 ] EXTENDAL
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
🔚 [ Π'ro/Drive:-Arts ] : (11/9π↔9/11Π)
[(system)] Sin(Πl/πRO),Cos(Πl/πRO)
Z∫ { Πl - [ Πl^(2n+1) / (2n+1)! ] } / 7
· { 1 - [ Πl^(2n+0)i / (2n+0)! · i ] } / 5
/ 6[ Πli - { Πl^(4n+1)i / (4n+1)! · i }^2 ] · 12/7
 
────────────────────────────────
◆ [ ZETA換関:ZETA INTEGRAL ]
----------------------------------------------------------------
[ZETA∫·GetshKetz][(system)i-idiot∫]
Linear INTEGRAL∫(a~b)
a:anc·enc
(0i)─(i^4·0i)
b:enc·anc
----------------------------------------------------------------
ZETA∫(v)
Linear INTEGRAL∫(a~-b)
b^[(R·2πi/e)(Re/ie)] 
a^[(R·4πi/e)(R3ei/4ier^2)] 
FactorR:[2πr/4πi]
----------------------------------------------------------------
ZETA∫(w)=2(v)+α
Linear INTEGRAL∫(2a~-ib)
b^[(R·3πi/e)(Re/ie)] 
a^[(R·4π(i^2)/e)(R5ei/6ier^2)] 
FactorR:[2πri·α/4πi^2+α]
α=Set(anc)[DELETE(2^[n]:{0→∞}]}]
----------------------------------------------------------------
 
────────────────────────────────
⚛️ [ Z'aeluh'Eden ]
(THAT[UNDER])72±[2:1]48±[3:1]36±[1:3]F={
anc·x;
enc·z;
xa->a;
ze->e;
a[-uh'-]e
a>-¡=!:->e
anc·enc}
F ZETA INTEGRAL PERFECTION [144:-72]·[144:-48]·[36:-108]
[enc] 1/n = ∑(∞,k=0) 1 / (n+1)^k
[anc] n = ∑(∞,k=0) 1 / (n+1)^k
[uh']  uとhの上端と下端の両端にae代入
エネルギーサーキット気味にモノグラム
hの上から射出するように変換aと補助対照に'e
▼i∫Dreadと合わせると無限遠方射出気味に行けます
[ i-inntegral / i∫Dread ] : (system)i-idiot
^(Tan[(Cos_x:Sin_y1]))[4πr/[Rad(R)π
/{[2(i5)]·[3i^3)]·[5(i(2/3))^2]·[11(2i(2/3))^2]}
 
────────────────────────────────
 🌟 [ DivergenceFunctions:DivF ]
------------------------------------------------------------------------------------------------
[ 1/n = ∑( ∞, l = 1 [, ( i · i )^2 -> l ] )  ( 1 / n + 1 )^l ]
Lim.Dead->Lim-Limit[*']s,Third[']s^Logs[Logos-Symbols]
------------------------------------------------------------------------------------------------
量子減衰  *-π/4 ik PrimalMinisterExplosion
[ℝ<-ℚ<-ℂ] ⊃ [ k[2] :-> *i, k[3] :-> *i, k[5] :-> *i, k[4] :-> *i ]
Lim.Dead->Lim-Limit[*']s,Third[']s^Logs[Logos-Symbols]
ℝ実数<-:ℚ有理数<-:ℂ複素数
De MultiplyLogicalPassFiltered -> REALIZED
------------------------------------------------------------------------------------------------
量子減衰PlusOneThat  *-π/4 ik PrimalMinisterExplosion

[ℝ<-ℚ<-ℂ::!!:;<-::¿¿*:*<-::∃∂::!!:¡¡¿¿::!!??::<-::!!:;ℝ∇ℚ::〓ℤ<-ℚ<-ℂ<-ℕ]

⊃ [ k[2] :-> *i, k[3] :-> *i, k[5] :-> *i, k[4] :-> *i ]

Lim.Dead->Lim-Limit[*']s,Third[']s^Logs[Logos-Symbols]

ℝ実数<-:ℚ有理数<-:ℂ複素数(フィルタ:ℝ実数∇ℚ有理数[ブリッヂ]

ℤ整数<-:ℚ有理数<-:ℂ複素数<-:ℕ自然数)

De MultiplyLogicalPassFiltered -> REALIZED

--------------------------------------------------------------------------------

 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
🦷 [ CulmSlashChilda'ae's ]
culm:
2π·2T -T:iThat-αyet(f)
a:a-b b:-π·2πri·iThat
[k=0->ifαThat(1:0:2)or(1:0:3:2)]
culm·Childa:
2π·2T -T:iThat-αyet(f)
a:a-b b:-π·2πri·iThat
[k=0->ifαThat(1:0:3:2)·(1:0:2:3)]
culm x&& 2 x culm·Childa x&& 3 : A culm·A
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:11)>
🔘 [ VoidExhautExhundle ]
─◯ [ RightMinusLeftPlus ]
[☄️] && IMAGINARY NUMBER&&PrimalNumbersINTEGRAL
(a) [x(-1),y( 0)] : ∫i(a=0,b=-2),
(b) [x(+1),y( 0)] : ∫i(a=4,b=0),
(c) [x(-1),y(-1)] : ∫i(a=3,b=0),
(d) [x( 0),y(-1)] : ∫i(a=2,b=0),
(e) [x(+1),y(-1)] : ∫i(a=1,b=-1),
(f) [x( 0),y(+1)] : ∫i(a=0,b=-4),
(g) [x(-1),y( 1)] : ∫i(a=5,b=0),
(h) [x( 1),y( 1)] : ∫i(a=-2,b=2)
─◯ [ LitghtMetaPulserImagination ]
        │   2·i·i・3·i  │
  8·i·i├─────┤31·i·i·i
        │ 5·i・11·i·i·i│             >>37·i·i·i·i(-)
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:5)>
👾 [ MagnetaryForceInDiaglelmentWholes ]👽
K=0,k=W(Max)  [W(K),W(K(ADVANCED))...]
[W] WAVIE THAT 2NUMS[([+]or[―]), and 2([A],[B],[C])]
[+]  (i-0)─(i-1)
[―]  (i-1)─(i-0)
[A]  ∫(a^h, -a^h)
[B]  ∫(b,^h, -b^h)
[C]  ∫(c^h, -c^h)
h=Rotate(p,q,r,current(ADVANCED))
p->q,current++; p->r,current--
q->r,current-=2; q->p,current-=3
r->p,current/2; r->q,current*=3/2-current/3
RandomAccess(W_Rootage; h_Rootage)
🧑‍🚀Proud(If-Squeeze) : BassSwitched[([+]·[―])↔([―]·[+])]
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
👹 [ OVERDRING FIRE FILLERFUL ]
[Run-∅All:]
Σ[z∅a→Ta∅z]
[E:Lc]∅:∅[sd][sp][sd]
Σ∅[sd][sp]∅[sp]Σ
[E:Lc]∅[sd][E:Lc]∅
 
────────────────────────────────
#(system)i-idiot<i'd(2):Sigmation(To:∞)>
💫 [ FIRE ENGAGEMENT EIGHT / Πust ]
8Σ∅[ void(INDICATOR) ]
──────────────────
[ST]  :  Σ[z∅a→Ta∅z]
  @   :  [WHOLE FIRE INTENSION]
[FE]  :  [FIRE ENGAGEMENT]
──────────────────
💫  [FE]  [ST]    [ ∅ @ ]
🔆  [FE]  [ST]    [ ∅ @ ∅ ]
🌕  [FE]  [ST]    [ ∅ @ ∅/2 @ ∅ ]
🌚  [FE]  [ST]    [ ∅ @ ∅ @ ∅/2 ]
🌔  [FE]  [ST]    [ ∅/4 @ ∅ @ ∅ ]
🌒  [FE]  [ST]    [ ∅ @ ∅ @ ∅/3 ]
🌝  [FE]  [ST]    [ ∅/2 @ ∅/2 @ ∅/2 ]
🌞  [FE]  [ST]    [ ∅/2 @ ∅/3 @ ∅/2 ]